Final Exam Review

Common Core Math 2

Factor each expression completely

1.
$$p^2 - 12p + 27$$
 (P-9)(p-3)

2.
$$w^2 - w - 6$$
 (W-3) (W+2)

3.
$$x^2 - 196$$
 $(\chi - 14)(\chi + 14)$

4.
$$2x^2 + 12x + 18$$

 $\partial(x^2 + 6x + 9)$
 $\partial(x+3)(x+3)$

5.
$$25x^2 - 49y^2$$
 (5x - 7y)(5x+7y)

$$(5x - 7y)(5x + 7y)$$

7.
$$5x^2 + 20x - 105$$

 $5(x^2 + 4x - 21)$
 $5(x + 7)(x - 3)$

8.
$$81x^4 - y^4$$

 $(9x^2 - y^2)(9x^2 + y^2)$
 $(3x - y)(3x + y)(9x^2 + y^2)$

Solve each quadratic equation using the method indicated:

9. Factoring:
$$5t^2 - 10t - 120 = 0$$

10. Factoring:
$$m^2 + 6m - 23 = -7$$

11. Factoring:
$$r^2 - 35 = -2r$$

12. Quadratic Formula:
$$5d^2 - 6d - 20 = 0$$

13. Quadratic Formula:
$$3x^2 - 24x = 4x$$

14. Quadratic Formula:
$$5n^2 + 8n - 10 = 0$$

15. Square Root:
$$3(x+5)^2 = 54$$

16. Square Root:
$$25x^2 + 7 = 52$$

11)
$$r^2+2r-35=0$$

 $(r+7)(r-5)$
 $(r=7)(r=5)$

$$\frac{12)}{6\pm\sqrt{6^2-4(5)(-20)}}$$

$$3) 3x^{2} - 28x = 0$$

$$28 \pm \sqrt{28^{2} - 4(3)}$$

$$2(3)$$

$$\frac{28 \pm \sqrt{784}}{6} = \frac{28 \pm 38}{6} = \frac{0.38}{3}$$

$$\frac{-8 \pm \sqrt{8^2 + (5)(-10)}}{2(5)}$$

$$(4) 25x^{2}+7=52$$

$$25x^{2}=45$$

$$x^{2}=9$$

$$x=\pm 3$$

Graphing:

17. $y=x^2+8x+12$

Axis of Symmetry: $X = \frac{-8}{2(1)} = -4$ Vertex: (-4, -4)

19.
$$y = -2x^2 - 26x - 60$$

Axis of Symmetry: X=-6.5

Vertex: (-6.5,24.5)

y-intercept: (0,-60)

Roots: (-310), (-1010)

18. $y = 2x^{2} - 6x + 1$ Axis of Symmetry: $x = \frac{6}{2(2)} = \frac{6}{4} = \frac{3}{4}$ Vertex: $(\frac{3}{2}, \frac{3}{2}, \frac{5}{2})$

y-intercept: (O11)

20.
$$y = x^2 - 9$$

Axis of Symmetry: X=0

Vertex: (0, -9)y-intercept: (0, -9)

Roots: (3,0), (-3,0)

State the increasing/decreasing intervals for each:

21.

Increasing: X < Decreasing:

22.

Increasing:_ Decreasing:

Describe each Transformation from the parent graph: $y = x^2$

24.
$$y = (x + 7)^2 - 3$$

25.
$$y = -3(x - 18)^2$$
reflect, stretch, right 18

24.
$$y = (x + 7)^2 - 3$$
 25. $y = -3(x - 18)^2$ 10. $y = -3(x - 18)^2$ 11. $y = -3(x - 18)^2$ 12. $y = -3(x - 18)^2$ 12. $y = -3(x - 18)^2$ 13. $y = -3(x - 18)^2$ 14. $y = -3(x - 18)^2$ 15. $y = -3(x - 18)^2$ 16. $y = -3(x - 18)^2$ 17. $y = -3(x - 18)^2$ 18. $y = -3(x - 18)^2$ 19. $y = -3(x - 18)^$

28.
$$y = \frac{11}{4}x^2$$

31. $3x^{2} + 3y^{2} + 5x + 3y + 2 = 0$ $x - 3y = -1 \times 3y - 1$

$$29. \ \ y = 2x^2 - 16x + 37$$

(put in vertex form first)

$$y = 2(x-4)^2 + 5$$

Stretch, right 4, up 5

Solve each system of equations.

Solve each system of Square $-x^2 - 10x - 3(-x - 4) - 16 = 0$ $-x^2 - 10x + 3x + 1230$ $-x^2 - 10x + 3x + 1230$ $-x^2 - 1x - 4 = 0$ $-x^2 - 1x - 4 = 0$ Applications of Quadratics (-6, 4, 2, 4) (-6, 4, 3, -3, 37)

$$\int_{0}^{6\pi} x^{2} - 10x - 3y - 16 = 0$$

$$x + y + 4 = 0$$

- 32. Using the graph at the right, it shows the height **h** in feet of a small rocket t seconds after it is launched. The path of the rocket is given by the equation: $h = -16t^2 + 128t$.
- a. How long is the rocket in the air? 65
- b. What is the greatest height the rocket reaches? 260 5
- c. About how high is the rocket after 1 second? 50 / 1
- d. After 2 seconds,
 - a. about how high is the rocket? \90
 - b. is the rocket going up or down? wp
- e. After 6 seconds,
 - a. about how high is the rocket? MD
 - b. is the rocket going up or down?
- f. Using the equation, find the exact value of the height of the rocket at 2 seconds.

$$h = -16(2)^2 + 128(2)$$

 $h = 192$ bt

50

time (seconds)

33. A ball is thrown in the air. The path of the ball is represented by the equation $h = -t^2 + 8t$. Graph the equation over the interval $0 \le t \le 8$ on the accompanying grid.

What is the maximum height of the ball? 10m

How long is the ball above 7 meters?

a)
$$\frac{-8}{2(-1)} = 4$$
 h= - (4)²+8(4) = 16

b)
$$7 = -t^2 + 8t$$

 $t^2 - 8t + 7 = 0$
 $(t - 7)(t - 1)$

34. After t seconds, a ball tossed in the air from the ground level reaches a height of h feet given by the equation $h = 144t - 16t^2$.

What is the height of the ball after 3 second? $144(3) - 16(3)^{2} \neq 288$ a.

What is the maximum height the ball will reach? 324 b.

Find the number of seconds the ball is in the air when it reaches a height of 224 feet. C.

he number of seconds the ball is in the air when it
$$2a4 = 1444 - 164^2 + 2-94 + 14=0$$

$$164^2 - 1444 + 2a4 = 0 + (t-7)(t+2)$$

$$164^2 - 1444 + 2a4 = 0 + (t-7)(t+2)$$
how many seconds will the ball hit the ground before

After how many seconds will the ball hit the ground before rebound? d.

$$0=144t-16t^{2}$$
 $t=0$ $10t(9-t)$ $t=9$

35. A rocket carrying fireworks is launched from a hill 80 feet above a lake. The rocket will fall into lake after exploding at its maximum height. The rocket's height above the surface of the lake is given by $h = -16t^2 + 64t + 80$.

- What is the height of the rocket after 1.5 second? a.
- What is the maximum height reached by the rocket? 144 \$\forall f\$ b.
- How long will it take for the rocket to hit 128 feet? C.
- After how many seconds after it is launched will the rocket hit the lake? | 5 d.

36. A rock is thrown from the top of a tall building. The distance, in feet, between the rock and the ground t seconds after it is thrown is given by

$$d = -16t^2 - 4t + 382$$
. How long after the rock is thrown is it 370 feet from the ground?
 $370 = -16t^2 - 4t + 382$ $t^2 + t - 12$

$$11x^{2}+4t-12=0$$
 $4t^{2}+t-3$

$$t^{2}+t-12$$
 $(t+4)(t-3)$
 $(t+1)(8+t-3)$
 $t=314$

Solve equations

37.
$$12 = \sqrt{b-5}$$

 $3 = \sqrt{b-5}$
 $9 = b-5$
 $14 = b$

37.
$$12 = \sqrt{b-5} + 9$$
 38. $-7\sqrt{n-9} = -7$
 $3 = \sqrt{b-5}$ $\sqrt{n-9} = 1$
 $9 = b-5$ $n-9 = 1$
 $14 = b$ $n = 10$

39.
$$\sqrt{2m-12} = \sqrt{m-2}$$

 $2m-12 = m-2$
 $m-12 = -2$
 $m=10$

40.
$$14 = (x + 24)^{\frac{1}{2}}$$

$$196 = x + 24$$

$$172 = x$$

Sketch the graph. Identify the domain and range of each. Find the x-intercept and y-intercept.

Describe the transformation from $y = \sqrt{x}$

$$y = -2 + 2\sqrt{x}$$

y-int: (0,-2)

42.

$$y = -\frac{3}{4}\sqrt{x+6} - 3$$

 $d: X \ge -6$ $r: Y \le -3$ X-int: none y-int: (0, -4.8)

Write each expression in exponential form.

43.
$$(\sqrt[3]{4x})^5$$
 $(4x)$

44.
$$\sqrt[5]{v^3}$$
 $\sqrt{3/5}$

Write each expression in radical form.

45.
$$(7m)^{\frac{1}{2}}$$

46.
$$(6n)^{\frac{4}{3}}$$
 $(\sqrt[3]{6n})^{4}$

Simplify each expression.

48.
$$(81x^2)^{\frac{3}{2}}$$

49.
$$(a^9)^{\frac{1}{3}}$$

49.
$$(a^9)^{\frac{1}{3}}$$
 50. $(125m^3)^{\frac{4}{3}}$

51.
$$(64n^9)^{\frac{1}{3}}$$

Write the equation for the radical function with the described transformation.

52. vertical shrink of 2/5, shifted right 3, shifted up 6 and reflected across the x-axis. $y = -\frac{2}{5}\sqrt{\chi} - 3 + 6$

53. vertical stretch of 7, shifted down 4
$$y = 7\sqrt{x} - 4$$

oss the x-axis.
$$y = -\frac{2}{5}\sqrt{x-3} + \sqrt{x}$$

Write an equation after the transformation from the parent graph of $y = \sqrt[3]{x}$ and $y = x^3$.

54. Vertical stretch by a factor of 4, right 5, reflection over the x-axis $y = -4 \sqrt[3]{x-5}$, $y = -4 (x-5)^3$

55. left 4, down 8, vertical shrink by a scale factor of $\frac{3}{4}$ $y = \frac{3}{4}\sqrt[3]{x+4} - 8$, $y = \frac{3}{4}(x+4)^3 - 8$

Describe the transformation.

56. Parent graph:
$$y = x^3$$

 $y = \frac{10}{3}(x+7)^3 - 12$
Stretch $\frac{10}{3}$, left 7, down 12

57. Parent graph:
$$y = \sqrt[3]{x}$$

 $y = \frac{-1}{5}\sqrt[3]{x - 23} + 24$ reflect
shrink $\frac{1}{5}$, right $\frac{23}{5}$

Sketch a graph of each. Describe each transformation.

58.
$$y = \sqrt[3]{x+3} + 4$$
 \eft \3.p4

rmation.
59.
$$y = -(x-4)^3 - 3$$
 reflect, right 4, down 3

Sketch a graph of each function. Identify the relative maximum/minimum, domain and range, zeros and y-intercept. 61. $f(x) = x^4 - 4x^3 + 4x^2 - 2$

60.
$$f(x) = -x^5 + 4x^3 - 5x - 4$$

Zero: (.6,0), (2.6,0) y-int: (0,-2) min: (0,-2), (2,-2)max: (1,-1), d: TR T: 42-2

Graph each of the following.

62.
$$f(x) = -\lfloor x \rfloor + 2$$

Describe transformation:

64.
$$f(x) = \begin{cases} x+3, & x < 2 \\ x^2 + 2x - 3, & x \ge +2 \end{cases}$$

63.
$$g(x) = 2[x-1] - 3$$

Describe transformation:

65.
$$f(x) = \begin{cases} x^2 - 1, & x < 0 \\ x - 1, & 1 < x \le 6 \\ -6, & x > 6 \end{cases}$$

Describe transformation: reflect, shrink, rishter Vertex (2,3) Axis of Symmetry: x = 2Zeros (-4,0), (8,0)

Describe transformation stretch, down 3 Vertex (0,-3) Axis of Symmetry: x = 0Zeros (1,5,0),(-1,5,0)

68.
$$f(x) = \frac{-9}{(x-3)} + 1$$

(sketch asymptotes)

69.
$$f(x) = \frac{4}{(x+5)}$$
 (sketch asymptotes)

70. Suppose that x and y vary inversely and that $y = \frac{1}{4}$ when x = 5. Write a function that models the inverse variation and find y when x = 12. $y = \frac{5}{4}$

67.

y = 2|x| - 3

71. A drama club is planning a bus trip to New York City to see a Broadway play. The cost per person for the bus rental varies inversely as the number of people going on the trip. It will cost \$120 per person if 44 people go on the trip. How much will it cost per person if 60 people go on the trip? C= K K=5280 120= K/44 Round your answer to the nearest cent, if necessary.

72. A company has found that the monthly demand for one of its products varies inversely with the price of its product. When the price is \$12.50, the demand is 5000 units. Find the demand if the d = 62500 11.25 d = 5555.56 d= k 5000= K P 12.50 K=62500 price is reduced to \$11.25.

Rewrite in logarithmic form.

73.
$$3^3 = 27$$
 $109_3 = 27 = 3$

74.
$$3^{-1} = \frac{1}{3}$$
 $109_3 \frac{1}{3} = -1$

75.
$$7^0 = 1$$

	Rewrite in exponential form.		
	76. $\log 1000 = 3$	77. $\log_8 \frac{1}{512} = -3$	78. $\log_{27} \frac{1}{9} = -\frac{2}{3}$
~	Evaluate with a calculator. Rou	and to the nearest ten-thous	andth
	79. $\log_8 12$ $8^{\times} = 12$ $\times = 1.2$		81. $\log_6 12$ $6 = 12$ $x = 0.1799$
Evaluate without a calculator. SHOW YOUR WORK.			01111
	82. $\log_2 \frac{1}{8} 2^{x} = 2^{-3}$	83. $\log_5 \frac{1}{125}$ $5^{\frac{3}{25}}$	84. $\log_7 343 \ 7^{\times} = 7^3$
ų.	Solve the exponential equation		housandth
	85. $14^{3n} = 54$	86 $16^n - 2 - 22$	$87. \ \ 3 \cdot 12^{x-9} = 36$
	(=, 5038)	86. $16^n - 2 = 22$ $16^n = 24$ $0 = 1.1462$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	88. If $f(x) = 3^x - 2$ and $g(x) = f(x) + 4$, describe the transformation needed to move from $f(x)$ to $g(x)$ and write the new equation for $g(x)$.		
	89. If $f(x) = 6 \cdot \left(\frac{1}{3}\right)^x - 10$ and $g(x) = \frac{1}{2}f(x) - 3$, describe the transformation needed to move from $f(x)$ to $g(x)$ and write the new equation for $g(x)$. $g(x) = 3\left(\frac{1}{3}\right)^x - 13$		
	90. Jamaica's population of 2,50 year for the next twenty years. W 2008?	hat was in the population in 19	o grow exponentially by 1.3% each 993? What was the population in $6.5 + 2.666780$, 3.66780 , 3.6
91. A computer depreciates at an average rate of 3.5% per month. If the values of the computer system was originally \$12,800, in how many months is it worth \$6350? $(0350 = 12,800)(1035)^{12} + .19.999$			
92. Cobalt-60 is a radioactive element with a half life of 5.3 years. If you have a 70 gram sample of Cobalt-60 in 2013, when will only 1 gram of the sample remain?			
	1)=70(b)	45.3 t=32,485	5
	93. How much would be in an ac 7.5% annual interest compounde A=15000 (ccount after 8 vears that had a	principle balance of \$15,000 with a
		25 per share triples its price per $25(3)^{14} = 11951422$	r share per year. What is the price per

16C2 = 120 96. An airline is hiring 5 flight attendants. If 8 people apply for the job, how many different groups of 5 attendants can the airline hire?

95. Farmington High is planning its academic festival. All math classes will send 2 representatives to compete in the math bowl. How many different groups of students can be chosen from a class of 16

students?

A bag contains 1 green, 4 red, and 5 yellow balls. Two balls are selected at random. Find the probability of each selection.

97. P(2 red)

100. P(2 green)

101. P(2 red and 1 yellow) 102. P(1 red and 1 green)

There are 3 nickels, 2 dimes, and 5 quarters in a purse. Three coins are selected in succession at random. Find the probability.

103. $P(\text{nickel}, \text{ then dime, then quarter}), if no replacement occurs <math>\frac{3}{10} \cdot \frac{1}{9} \cdot \frac{3}{8} = \frac{30}{120} = \frac{3}{120} = \frac{3}{1$

105. P(2 nickels, then 1 quarter), if no replacement occurs

106. P(3 dimes), if replacement occurs

407. P(3 dimes), if no replacement occurs

An urn contains 7 white marbles and 5 blue marbles. Four marbles are selected without replacement. Find each probability.

108. $P(4 \text{ white or 4 blue}) \frac{7}{12} + \frac{5}{12} = 109.$ P(exactly 3 white) **110.** P(at least 3 white) **111.** P(fewer than 3 white) **112.** P(3 white or 3 blue) **113.** P(no white or no blue)

114. A department store employs 28 high school students, all juniors and seniors. Six of the 12 seniors are females and 12 of the juniors are males. One student employee is chosen at random. What is the probability of selecting a senior or a female?

$$\frac{12}{18} + \frac{10}{28} + \frac{10}{28} = \frac{4}{7}$$

Find each variable. Leave all answers in simplest radical form.

116.

 $X = 45^{\circ}$ $Y = 28.\sqrt{2} = 28\sqrt{2}$ $\sqrt{2}.\sqrt{2} = \frac{28\sqrt{2}}{2}$

118.

Find the value of x. $\ell = 15, m = 36, n = 39 \text{ find all trig ratios. Leave answer in simplest form.}$ $Cos L = \frac{3b}{39} \qquad tan L = \frac{15}{36}$ $= \frac{12}{13} \qquad = \frac{5}{13}$ $= \frac{5}{13} \qquad = \frac{12}{13} \qquad = \frac{5}{12}$

$$SINL = 15$$

$$39$$

Find the value of x. 119.

$$\cos 41 = \frac{x}{3}$$

$$X = 64.4$$

Determine how, if possible, the triangles are congruent. 129. 130. 131.

